
Mycobacterium tuberculosis (M. tb) is one of the world’s most successful human pathogens, infecting ~2 billion people worldwide. Although 
there are effective drugs against M. tb., the disease remains out of control owing to prolonged and toxic treatment. Shorter regimens are 
urgently required to control TB. Drug-resistant TB (DR-TB) also threatens to derail TB control. These unfulfilled needs could be addressed 
by the identification and development of host-directed therapeutic agents for TB. Manipulation of the innate immune response, including 
autophagy, may lead to the identification of cellular pathways that could be exploited to develop host-directed therapeutic interventions. 
Host-directed therapies (HDTs) aim to augment immune mechanisms against M. tb infection and/or reduce excess inflammation, thus 
preventing end-organ tissue damage, preserving lung function and/or enhancing the effectiveness of TB drug therapy in eliminating 
infection. HDTs may also have additional advantages for patients with TB/HIV co-infection, as HDTs may reduce the risk of interaction 
with antiretroviral drugs and the risk of developing immune reconstitution inflammatory syndrome (IRIS) and death. In this review, we 
discuss the role of autophagy as a potential pathway that could be exploited as a host-directed TB therapeutic agent.
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Approximately one-third of the world’s population is estimated to be 
latently infected with TB, and are therefore at risk of developing active 
TB disease during their lifetime.[1] According to the World Health 
Organization (WHO), in 2017 it was estimated that ∼10 million 
individuals became ill with TB, of whom 9% were HIV-infected (72% 
in Africa).[1] Drug-resistant tuberculosis (DR-TB) is a major threat 
to global health.[1] The true burden of DR-TB in Africa is poorly 
described owing to poor reporting. The African region has the highest 
DR-TB prevalence: 3.1% of cases in Southern Africa; 2.1% in Central 
Africa; 1.9% in Western Africa; and 1.7% in Eastern Africa.[2] DR-TB 
patients endure lengthy and toxic TB treatment but continue to suffer 
from functional disability due to lung damage from an aberrant host 
immune response to M.tb.[3]

Research on antimicrobials that directly target M. tb must continue 
but additional approaches are also urgently needed. One of those 
strategies might involve host-directed therapy (HDT) with FDA-
approved compounds targeting manipulation of the innate immune 
response.[4] Traditionally, M. tb drugs are either bacteriostatic 
(preventing bacterial replication) or bactericidal (directly killing the 
bacteria). Treatment of drug-susceptible tuberculosis comprises a 
standard 6-month course of 4 antimicrobial agents, which consists 
of 2 months of isoniazid, rifampicin, pyrazinamide and ethambutol 
(2HRZE) and 4 months of isoniazid and rifampicin (4HR).[5] Drug 
resistance in TB emerges as a result of spontaneous gene mutations 
in M.tb that render the bacteria resistant to the most commonly used 
TB drugs.[6] However, HDT compounds act by modulating the host 
immune response, enabling bacterial killing even at suboptimal drug 
concentrations, and thus limiting the development of drug resistance.[7]  
The most prominent cell intrinsic biological pathway targeted by 
numerous HDT candidates is autophagy within macrophages.[8] 

HDTs include commonly used drugs for non-communicable 
diseases with good safety profiles, immune modulatory compounds, 

biologics and cellular therapies.[9] The clinically relevant examples 
and progress of these agents as adjunct treatment options 
for bacterial, viral and parasitic infectious diseases has been  
reviewed.[10] The examples of HDT agents previously used 
successfully against pathogens re summarised in Table 1.

TB infection in humans induces a classic inflammatory response. It is 
the balance between immunopathology and insufficient inflammation 
that may determine disease severity and outcome. The detrimental 
effects of inflammation in human hosts are crystallised in the TB 
immune reconstitution inflammatory syndrome (TB-IRIS).[11] TB-IRIS 
is paradoxically worsening of TB symptoms with reconstitution of the  
immune system associated with highly active antiretroviral therapy 
(HAART).[11] A randomised, controlled trial for adjunctive prednisone 
showed improvement in symptoms for TB-IRIS.[12] The morbidity 
associated with inflammatory symptoms of IRIS reflects a general 
detrimental inflammatory state that can be induced by TB infection. 
Autophagy has the potential to balance the beneficial and detrimental 
effects of immunity and inflammation post TB infection.[13] 

The activation of autophagy by different drugs or compounds may 
represent a promising treatment strategy against M. tb infection and 
DR-TB. The mediators of autophagy activation include vitamin D 
receptor signalling, the mechanistic target of rapamycin (mTOR), 
the AMP-activated protein kinase pathway, sirtuin-1 activation, 
and nuclear receptors.[14] In the present review, we discuss current 
knowledge and perspectives on new therapeutic strategies targeting 
autophagy against TB. 

Autophagy
Three distinct types of autophagy have been described: micro-
autophagy, in which the cytosol is directly engulfed by lysosomes;[15] 
chaperone-mediated autophagy, in which specific proteins are 
recognised by a cytosolic chaperone and targeted to the lysosome;[16] 
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and macro-autophagy (hereafter referred 
to as autophagy), in which an isolation 
membrane, or phagophore, fuses with itself 
to form an autophagosome with a distinctive 
double-membrane, which can then fuse with 
lysosomes (Fig. 1).[17] The autophagy pathway 
is defined in genetic terms as dependent 
on autophagy-related (Atg) genes and in 
morphological terms as the appearance 
in the cytoplasm of double-membraned 
organelles termed autophagosomes that 
capture cytosolic cargo and fuse with lyso- 
some.[18, 19] Autophagy is crucial for the 
maintenance of cellular homeostasis by 
continuously degrading damaged organelles, 
long-lived proteins, protein aggregates, and 
intracellular pathogenic microorganisms.[20] 

There are two forms of macro-autophagy: 
non-selective (bulk or generalised), which 
is autophagic degradation of the cytoplasm 
usually in response to starvation; and 
selective autophagy, whereby specific 
targets in the cytosol are recognised 
by autophagic receptors and captured 
by autophagosomes.[21] Xenophagy is a  
selective autophagy that targets the 
intracellular microbes for degradation 
limiting their survival and replication.[22] 

Several studies have shown that autophagy 
is associated with different immunological 
processes in which it: (i) functions as an innate 
defence mechanism against intracellular 
microbes, including M.tb, as demonstrated 

by Gutierrez et al.;[20] (ii) is under the control 
of pattern recognition receptors (PRR), such 
as toll-like receptors (TLRs), and it acts as 
one of the immunological output effectors 
of PRR and TLR signalling (Delgado et al.[23] 
and Xu et al.[23]); (iii) is one of the effector 
functions associated with the immunity-
regulated GTPases;[24] and (iv) is activated by 
Th1 cytokines (which act in defence against 

intracellular pathogens) and is inhibited by 
Th2 cytokines (which make cells accessible 
to intracellular pathogens) (Harris et al.).[25, 26] 
The opposing roles of Th1 and Th2 cytokines 
dictating the ability of macrophages to control 
intracellular M.tb can now be attributed in 
part to the autophagy activating effect of Th1 
cytokines, and autophagy repressing effects of 
Th2 cytokines.[27]

Table 1. Host-directed therapeutic agents for infectious disease

Pathogen and type of agent
Examples of host-
directed therapy Mechanism of action Developmental stage

Bacterial infections
Mycobacterium tuberculosis
repurposed drug [13]

Metformin Modulation of inflammation and activation of 
intracellular antimicrobial defences

Preclinical

Streptococcus pneumoniae 
antibiotic[45]

Azithromycin, 
erythromycin

Reduces local tissue inflammation through 
anti-inflammatory activities in community-
acquired pneumonia

In clinical use (though 
clinically relevant anti-
inflammatory effect is 
controversial)

Viral infections
Hepatitis C
cytokine therapy[46]

Pegylated interferon a 
and b

Potentiation of pro-inflammatory antiviral 
immune response

In clinical use

HIV repurposed drug[47] Valproic acid Reactivation of latent HIV infection and 
making new viral progeny susceptible to 
ART and immune attack by enhancing gene 
transcription

Preclinical

Parasitic disease
Malaria repurposed drugs[48] Desferriomxamine Ferrochelatase inhibitor reduces  

Plasmodium spp. burden in erythrocytes
Preclinical

Leishmaniasis repurposed 
drug [49]

Imiquimod, resiquimod TLR agonist that induces B-cell activation and 
pro-inflammatory cytokine signalling

In clinical use

1. Membrane 
isolation from 
endoplasmic 
reticulum

2. Membrane 
elongation around 
the pathogen 
phagophore

3. Maturation  
autophagosome

Lysosome

4. Cargo degradation 
autolysosome

Lysosome and autophagosome 
fusion

5. Release of 
fatty acids and 
amino acids 

Pathogen

Fig. 1. Phases of the autophagy pathway. The autophagic pathway proceeds through several 
phases, including initiation (formation of a pre-autophagosome structure leading to an 
isolation membrane, or phagophore), vesicle elongation, autophagosome maturation and cargo 
sequestration, and autophagosome-lysosome fusion. In the final stage, autophagosome contents 
are degraded by lysosomal acid hydrolases and the contents of the autolysosome are released for 
metabolic recycling.
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There is growing evidence that autophagy 
may play a critical role in response to TB. 
There are studies which demonstrated that 
Th1 cytokines IFN-g and TNF-a induce 
autophagy which enables the macrophages 
to overcome the phagosome maturation 
block and inhibit intracellular survival.[28] 
Conversely, the Th2 cytokines IL-4 and IL-
13 inhibit autophagy in murine and human 
macrophages (Table 2).[28]

Autophagy and  
M. tuberculosis
M. tb is an intracellular pathogen and 
thus requires the host cells, i.e. alveolar 
macrophages, dendritic cells, and neutrophils, 
for its replication and persistence.[29] Host 
phagocytic cells provide the synthetic 
machinery and energy source for M. tb, and 
also possess intrinsic defence mechanisms 

that are triggered by infection.[30] Therefore, 
M. tb must possess strategies to block such 
defences as shown in Fig. 2.[31] By modifying 
the host defence mechanisms, M. tb is able 
to persist and survive in resting macro-
phages.[32] M. tb persists in the macrophages 
by subverting multiple intracellular 
antimicrobial mechanisms. The major 
virulence feature of pathogenic mycobacteria 
rests on the ability to parasitise the host’s 
scavenger cells, especially macrophages. 
After phagocytic uptake by macrophages, 
M. tb is not delivered to phagolysosomes 
for degradation, which is the hallmark of 
autophagy. Instead, it continues to reside 
within the phagosome which is prevented 
from maturing or fusing with lysosomes. In 
this manner, live pathogenic M. tb remain in a 
weakly acidified environment away from the 
hostile environment of phagolysosomes. M.tb  

is retained in the phagosome where it will 
survive or replicate within the macrophages. 
A variety of mechanisms have been suggested 
that contribute to the survival of M. tb within 
the macrophages, including inhibition of 
phagosome-lysosome fusion, inhibition of 
the acidification of phagosomes, resistance 
to killing by reactivated oxygen and nitrogen 
intermediates and modification of the lipid 
composition of M.tb cell membrane.[33] 

Although several mycobacterial factors 
have been implicated in immune evasion, 
the mechanisms and specific mediators 
involved remain unknown. Vergne et al.[34] 
described how M. tb lipoarabinomannan 
(LAM) causes phagosome maturation arrest 
by interfering with intracellular signalling 
and membrane trafficking. LAM from 
virulent M. tb blocks cytosolic calcium  
by preventing the interaction PI3kinase 
hVPS34 with calmodulin, which is crucial for 
autophagosome maturation.[34] Romagnoli et 
al. [35] demonstrated that virulent strains of  
M. tb impair late steps of autophagy 
by secreting ESX-1, which inhibits 
autophagosome-lysosome fusion. 

It has become clear that M. tb is capable 
of inhibiting autophagy, thus allowing 
it  to replicate within macrophages  
(Figs 2 and 3).[34] Macrophage activation by 
Th1 cells and their cytokines, IFN-g and 
TNF-a, improves M. tb control but this 
activation was shown to be insufficient to 
completely clear the infection.[36] Active 
TB emerges either as progressive primary 
TB infection or as a consequence of 
immune suppression after long stages of 
pathogen persistence (Fig. 3).[37] 

Autophagy induction 
as a host-directed TB 
therapeutic option
HDT is an emerging concept in the 
treatment of M. tb where host immune 
response is modulated to achieve better 
control of TB.[13] HDT can interfere with host 
mechanisms that are required by a pathogen 
for productive replication or persistence.[38] 
Alternatively, HDT can enhance the immune 
response by stimulating mechanisms that 
are involved in host defence against the 
pathogen, target pathways that are disrupted 
by a pathogen, contribute to hyper-
inflammation, and modulate host factors 
that lead to dysregulation responses at the 
site of pathology.[39]

Table 2. Known modulatory effects of cytokines on autophagy
Cytokine/chemokine Effect on autophagy
IFN-g[20,25] Induces autophagy in human and murine macrophages: 

Dependent on IRGM genes.
TNF-a[28,50] Induces autophagosome formation in human and murine 

macrophages.
IL-1a and IL-1b[50] Autophagy regulates the secretion of IL-1b and IL-1a in 

antigen-presenting cells. This is one of the mechanisms in 
which autophagy regulates the inflammatory response in 
antigen-presenting cells.

IL-4 and IL-13 [26] Inhibits starvation-induced autophagy via activation of the 
Akt pathway, which activates mTOR. However, IL-4 did 
not influence rapamycin-induced autophagy because it acts 
directly on the mTOR, thereby bypassing Akt signalling.

Mycobacterium 
tuberculosis

M.tb induces uptake

phagosome

M.tb suppresses autophagy 

LC3

LC3

LC3

Autophagasome

Autolysosome
M.tb prevents 
ag processing

M.tb prevents 
phagosomal
maturation

Cathelicidins,
beta-defensins 

M.tb blocks
antimicrobial peptide 

M.tb prevents 
innate signaling 
pathways  

Fig. 2. Mycobacterium tuberculosis (M. tb) persists in the macrophages by subverting multiple 
intracellular antimicrobial mechanisms. Phagocytosis of M. tb is facilitated by various pattern 
recognition receptors (PRRs); mainly complement receptors (CRs) responsible for uptake of 
opsonised M. tb, mannose receptors (MRs) and scavenger receptors (SR) facilitate uptake of 
non-opsonised TB bacilli. M.tb prevents antigen (ag) processing and MHCII expression in ag-
presenting cells. TB pathogen alters the autophagic machinery through the EASAT-6 secretion 
system-1 (ESX-1) system. The M. tb-secreted virulence factors suppress innate immune signalling 
pathways including autophagy and also block antimicrobial peptides. (LC3 = microtubule-
associated protein light chain3.)    



52    AJTCCM  VOL. 25  NO. 2  2019 

REVIEW

Indeed, several HDT approaches rely on 
the repurposing of licensed drugs for other 
diseases, such as cancer, metabolic and 
cardiovascular diseases.[40] Therefore, the 
concept of HDT for M. tb infection is novel 
and provides untapped opportunities that 
are urgently needed in the face of increasing 
DR-TB infection.[39] Nevertheless, most 
HDT approaches are not considered to be 
stand-alone therapies but are combined 
with existing TB drugs.[3] Some studies 
have shown that induction of autophagy 
might be achievable by treatment with 
metformin (MET) and/or nitazoxanide, 
which can promote M. tb kill.[13,32] Targeting 
autophagy could lead to effective treatments 
for DR-TB, shorter treatments for drug-

sensitive tuberculosis, and more adjunctive 
therapy using FDA-approved drugs such as 
metformin, nitazoxanide, statins, vitamin 
D and imatinib compounds (Table 3).[4] 
Several drugs with potential for repurposing 
such as TB HDTs already have well-defined 
safety and pharmacokinetic profiles and are 
ready to progress to randomised, controlled 
clinical trials that will evaluate their 
effectiveness in TB, TB–HIV co-infection 
and TB with other diseases.[40] Vitamin D 
induces the expression and release of innate 
antimicrobial peptides such as cathelicidin, 
promoting autophagosome maturation and 
TB killing.[41] The diabetes drug metformin 
enhances macrophage autophagy by 
promoting phagolysosome fusion. Metformin 

achieves this by increasing mitochondrial 
production of reactive oxygen species, and 
also induces expression of AMP-activated 
protein kinase, a potent inducer of auto- 
phagy.[13] Statins such as simvastatin and 
rosuvastatin have anti-inflammatory effects, 
and induce autophagy and phagosome 
maturation.[51] The anticancer kinase 
inhibitor imatinib interferes with M. tb 
entry and intracellular survival in host cells 
and may help to clear M. tb by promoting 
autophagy.[52]

Conclusion
M. tb is an intracellular pathogen that 
alters the ability of the host’s phagocytic 
cells to clear the infection. Manipulation 
of the innate immune response should 
contribute to intracellular M. tb killing. 
[31] The activation of autophagy by 
diverse compounds may represent a 
promising treatment strategy against M. 
tb infection, including drug-resistant 
strains.  [42] Important mediators of 
autophagy, including vitamin D receptor 
signalling and the AMP-activated protein 
kinase pathway, are of great importance 
in identifying compounds which can 
be used as HDT. [43] Understanding the 
mechanisms and key players involved in 
modulating antibacterial autophagy will 
provide innovative improvements in anti-
TB therapy via an autophagy-targeting 
approach.[44]

Thus, the identif ication of novel 
compounds and pharmacological host 
targets (in immune pathways) that could 
amplify and facilitate effective host immune 
responses to help eliminate TB bacilli is an 
attractive approach.[14] However, this newly 
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Fig. 3. The spectrum of Mycobacterium tuberculosis infection. Mycobacteria are inhaled into the 
lung alveoli. Here the infection may be cleared by presumed sterilising innate immune response 
(these mechanisms may determine the results of immunodiagnostics tests such as the tuberculin skin 
test (TST) and interferon-gamma release assay (IGRA). In the remainder, the infection may progress 
to latent tuberculosis infection (LTBI) or in a small percentage to active tuberculosis infection. 

Table 3. Mechanisms of different compounds in autophagy induction
Compounds Mechanisms
AMPK pathway 
Metformin [13] Metformin inhibits M. tb growth by activating AMPK-mediated autophagy pathway in 

macrophages, which promotes phagolysosome fusion. Additionally, metformin selectively 
induces production of mitochondrial reactive oxygen species (mROS). In mice infected with 
M. tb, metformin improves pulmonary pathology and reduces bacterial load.

Small molecules/chemicals
Simvastatin[51] Inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase and agonists of peroxisome 

proliferator activated receptor-g. Statins reduce the formation of lipid droplets by mycobacteria 
and reduce survival of M. tb in macrophages by inducing autophagy and maturation of the 
phagosome.

Imatinib[52] Direct pharmacological effect on macrophage function, promoting acidification and 
maturation of phagosomes. In mouse models, it reduces intracellular M. tb survival in vitro. 
It also increases neutrophil and monocyte numbers, contributing to anti-TB host immune 
response.

M. tb = Mycobacterium tuberculosis; AMPK = adenosine monophosphate-activated protein kinase; mTOR1 = mammalian target of rapamycin; IL1R = interleukin-1 recepror; TB = tuberculosis.
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emerging treatment option should not be misinterpreted as an 
exclusive alternative; rather it should be seen as a synergistic add-
on to anti-TB drugs. 

Exploitation of already licensed FDA-approved drugs, despite their 
current indication, may have therapeutic properties against TB, and 
the evaluation of these compounds is more cost-effective than the 
development of new drugs. Undoubtedly, future treatment regimens 
for M. tb will converge on the concept of personalised medicine, 
providing the best possible combinations that are adjusted, not only 
for the pathogen, but also for the patient. However, the clinical benefit 
versus the higher costs of these approaches remain to be determined. 
Moreover, HDTs as an adjunct strategy for the treatment of M. tb is 
still in its infancy and requires further investigation. 
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